
Atmosphere: Towards Practical Verified Kernels in
Rust

Xiangdong Chen∗
University of Utah

Zhaofeng Li∗
University of Utah

Lukas Mesicek
University of Utah

Vikram
Narayanan

University of Utah

Anton Burtsev
University of Utah

Abstract
Historically, development of formally-verified operating
systems was a challenging, time-consuming undertaking
that relied on a narrow formal verification expertise and
required many person-years of effort. We argue, however,
that the balance of practicality is finally changing with de-
velopment of automated verification tools that leverage a
unique combination of the linear type system of Rust and
automated verification based on satisfiability modulo theo-
ries (SMT). Our work leverages, Verus, a new SMT-based
verifier for Rust, for development of a minimal yet practi-
cal microkernel, Atmosphere. Atmosphere is designed as a
full-featured microkernel conceptually similar to the line
of early L4 microkernels. We develop all code in Rust and
prove its functional correctness, i.e., refinement of a high-
level specification with Verus. Our experience shows that
Verus provides a collection of practical features that signif-
icantly lower the burden of a verification effort making it
possible to reason about correctness of the low-level sys-
tems code, e.g., low-level memory and address space man-
agement, recursive data structures like linked lists and page
tables, etc. On average our code has proof-to-code ratio of
7.5:1 which is significantly lower than in prior approaches.

CCS Concepts: • Software and its engineering → Soft-
ware verification; Functionality.

1 Introduction
Despite decades of progress, reasoning about correctness
of operating system kernels remains a complex, time-
consuming undertaking. The kernel runs on bare-metal and
requires reasoning about everything from the low-level de-
tails of hardware execution environment to the system call
interface exposed to user applications. Correctness of the

∗Both authors contributed equally to the paper

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
KISV ’23, October 23, 2023, Koblenz, Germany
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0411-6/23/10.
https://doi.org/10.1145/3625275.3625402

kernel rests on the proofs about physical and virtual mem-
ory, low-level details of memory and resource management,
lifetimes of numerous kernel data structures, correctness of
synchronization in a parallel and concurrent environment,
implementation of recursive data structures that are opti-
mized to extract the last bits of performance and more.
Historically, verification of even a simple kernel required

tens of person-years to complete. For example, despite nu-
merous careful design decisions aimed to minimize verifica-
tion effort, e.g., avoiding memory management in the ker-
nel and big-lock synchronization, verification of the first for-
mally verified microkernel, seL4, took 20 person-years for a
system of 10KLOC [?].
To address complexity of verification effort, several

projects explored ideas of “push-button” verification that
attempted direct translation of the kernel code into a sat-
isfiability modulo theories (SMT) expression that was then
checked by an SMT solver [? ?]. While achieving nearly au-
tomated verification, such approaches required numerous
simplifying assumptions about the kernel interface and ker-
nel’s internal organization, pushing most of the typical ker-
nel functionality to unverified user libraries. Trying to ap-
proach complexity of verification from a different angle, sev-
eral systems advocated for use of clean-slate programming
languages like Dafny [?] designed for a high degree of proof
automation [? ? ?]. Ironclad was the first system to scale
verification effort to the whole system from the application
layer down to the kernel assembly [?]. Yet numerous algo-
rithmic simplifications and managed runtime of the Dafny
language hindered performance of the system. For example,
Ironclad relied on a simple and inefficient stop-the-world
garbage collector from the Verve microkernel [?].
We argue, however, that the balance of practicality is fi-

nally changing with development of automated verification
tools that leverage a unique combination of the linear type
system of Rust [? ?] and automated verification tools like
Verus designed to provide a high-degree of proof automa-
tion similar to Dafny but in Rust [?]. Arguably, a combina-
tion of Rust and Verus for the first time provides support for
practical, low-burden verification of low-level systems.
Rust is the first practical language that can enforce mem-

ory safety without garbage collection. In contrast to man-
aged languages Rust relies on a restrictive type system that
controls ownership of objects allocated on the heap [?].
Control over aliases provides a way to statically reason

1

https://doi.org/10.1145/3625275.3625402

about lifetimes of objects and generate an explicit destruc-
tor at compile time, hence ensuring temporal safety with-
out garbage collection. Historically, even the fastest safe lan-
guages like Go and C# resulted in a 36-42% overhead com-
pared to unsafe C on high-performance system workloads
like network device drivers [?]. Rust, however, supports de-
velopment of safe code that stays within few percents of
unsafe C implementations [? ?].
Verus complements Rust with the Dafny-like automated

SMT-based reasoning [?]. Similar to Dafny, Verus provides
a high degree of automation and user-friendliness which al-
low system developers towork on formally-verified systems
directly in the language designed to build such systems and
arguably with minimal background in formal verification.
Verus uses one language for specifications, proofs and ex-
ecutable code. Moreover, due to the lack of managed run-
time, verified Rust code can be compiled and executed on
bare metal.
Compared to Dafny, Verus further simplifies verification

effort. First, Verus uniquely leverages the linear type system
of Rust to lower complexity of reasoning about the heap [? ?
]. Second, Verus provides an elegant way to reason about a
range of unsafe pointer constructs through an idea of linear
permissions [?]. To ensure practicality of the otherwise lin-
ear language, Rust allows escape from the ownership rules
through its unsafe subset, e.g., to implement doubly-linked
lists, aliases, concurrent primitives, etc. Historically, reason-
ing about unsafe subset of Rust remained challenging [?]
thus limiting verification of Rust code to its safe subset [?].
Linear permissions however provide a way to reason about
limited but powerful subset of unsafe constructs that in prac-
tice support correctness proofs for typical kernel data struc-
tures, e.g., linked lists, synchronization primitives, and con-
structs that implement interior mutability.
Our work presents an early prototype that leverages Rust

and Verus for development of a minimal yet practical mi-
crokernel, Atmosphere. Specifically, we develop all code in
Rust and prove its functional correctness, i.e., refinement of
a high-level specification with Verus. Similar to prior work,
we carefully design the kernel to keep verification complex-
ity under control. Still, Verus allows us to implement typical
kernel data structures like linked lists, support verifiedmem-
ory allocation, develop proofs about page tables, etc. Our ini-
tial experience shows that even through some compromises
are necessary, a combination of Verus and Rust significantly
reduces verification effort. On average our code has proof-
to-code ratio of 7.5:1 which is significantly lower than in
prior approaches [? ?]. Moreover, Rust and Verus allow us
to reason about a microkernel with a feature-rich interface
that is conceptually similar to the line of classical L4 micro-
kernels, i.e., without the capability interface [?].

2 Background

Early verification efforts were aimed at attaining the high-
est A1 assurance rating defined by the “Orange Book” [?]
but remained largely unsuccessful due to limitations of ex-
isting verification tools [? ? ? ?]. SeL4 became the first sys-
tem to demonstrate a way to achieve verification of a prac-
tical microkernel [?]. SeL4 adopted a unique design choice
in which the kernel does not perform any memory alloca-
tion at all, but instead pushes all allocation decisions to user
processes (which remain unverified). This enabled proving
isolation between subsystems, but resulted in an unusual
system model which required user code to manage their
memory through a capability interface. Verification of seL4
involved 200,000 lines of proof code of the Isabelle/HOL the-
orem prover for 8,700 lines of C and required 22 person-
years [?].
Hyperkernel used LLVM intermediate representation (IR)

generated from C which was then translated into a satisfi-
ability modulo theories (SMT) expression checked by the
Z3 SMT solver [?]. Hyperkernel demonstrated high degree
of automation but at the cost of severe limitations in ker-
nel functionality. To support automated translation, Hyper-
kernel required all paths in the kernel to be finite, e.g., the
system call interface forced the process to provide a file de-
scriptor number for opening a file instead of choosing an
available one in the kernel.
Ironclad [?] addressed complexity of the verification ef-

fort through a combination of Dafny [?], Boogie intermedi-
ate verification language [?], and Z3 SMT solver [?]. De-
signed explicitly for verification, Dafny allowed reducing
the size of the proof without degrading expressiveness of
implementation (3 person-years). Ironclad relied on a pre-
viously verified microkernel, Verve [?], and mainly con-
centrated on verifying cryptographic libraries, device dri-
vers (trusted platform module), and several applications [?
]. Note that verification of Verve addressed only safety but
not functional correctness of the kernel [?].
CertiKOS [?] and 𝜇C/OS-II [?] were aimed at verification

of concurrent systems through the use of the Coq interac-
tive theorem prover [?]. CertiKOS developed a concurrent
OS kernel that supported fine-grained locking, interrupts
and threads. Verification of CertiKOS and 𝜇C/OS-II took 2
and 5.5 person-years, respectively but required nearly the
same proof-to-code ratio as seL4.
SeKVM utilized Coq to verify the core of the Linux KVM

hypervisor [?]. Specifically, SeKVM decomposed the hyper-
visor into two separate layers and verified the privileged
core using Coq. The core was further split into layers built
on top of an abstract machine model, with each successively
simplifying the model for upper layers. The top-level spec-
ification was used to prove that any implementation of the
deprivileged upper layer can maintain the confidentiality
and integrity of the VM data. Even though SeKVM relied on

2

ClightGen [?] for translating the C implementation to Coq
it still required a large manual effort to address numerous
unsupported C idioms. Recently, Spoq improved on Clight-
Gen cutting the verification effort of SeKVM by 70% [?].
Finally, similar to ours, a recent project, verified NrOS [?

], uses Verus to verify an existing NrOS kernel [?] which is
also developed in Rust. NrOS verifies the code for page-table
management and its core concurrency mechanism, node
replication, yet using Dafny [?]. Compared to our work
NrOS aims at verification of a larger kernel that while be-
ing a microkernel implements a kernel-level file system. We
choose a more pragmatic path of verifying only a minimal
microkernel that we design from scratch to ensure that veri-
fication is feasible. We plan to approach verification of user-
level services like device drivers, network stacks and file-
systems separately.
Verus Verus is a new verification tool for Rust that sup-
ports semi-automated reasoning by using an SMT solver [?
]. Verus attempts to replicate success of earlier verification
frameworks combining proofs and development in a single
language [? ? ? ?]. Verus, however, is different in several
important ways. First, instead of relying on a verification-
centric language, Verus works by extending Rust, a lan-
guage which is already designed for safe development of
low-level systems. Second, Verus benefits from the Rust’s
linear type system to simplify proofs, support verification of
pointer-manipulating and concurrent Rust code, and imple-
ment efficient SMT encoding. For instance, instead of hav-
ing to reason about the complex semantics of heap based
mutation, Verus can encode operations on any any mutable
reference as a sequence of transformations on immutable
values, as Rust guarantees such references will be linear.

To introduce the basic features of Verus, we describe a
partial specification for a page backed doubly linked list that
we use in Atmosphere to support management of dynamic
data structures like lists of endpoints, threads, processes,
etc., (Listing 1). At a high level, Verus allows one to write ex-
ecutable code, specifications for modelling the behavior of a
system, and proofs that the executable code conforms to the
specified behavior. Executable code is written in Rust, while
specifications and proofs are written in a functional exten-
sion of Rust which includes logical quantifiers like forall and
exists as well as keywords like requires and ensures (lines 31-
39) to specify preconditions and postconditions of functions.
For example, the well_formed() function specifies what condi-
tions the list must satisfy to be in a valid state (one such
condition being every node pointer in the list must have a
corresponding owned page). Verus modifies the Rust com-
piler to elide specifications and proofs (ghost code) during
compilation time. For instance the Map and Seq types aremath-
ematical models of the underlying code, but are ghost types
thus do not incur any runtime overhead.
The list itself is composed of a combination of a standard

doubly linked list of nodes (lines 14-15), a reverse singly

1 struct Node<T> {
2 contents: T, next: Option<NodePtr<T>>, prev: Option<NodePtr<T>>
3 }
4 struct PageNode { prev: Option<PageNodePtr>, }
5
6 type PagePerm<T> = PageArena<Node<T>, PageNode>,
7 type NodePtr<T> = PageElementPtr<Node<T>>;
8 type PageNodePtr = PageMetadataPtr<PageNode>;
9
10 struct LinkedList<T> {
11 perms: Map<PagePPtr, PagePerm<T>>,
12 // Doubly linked list of elements
13 ptrs: Seq<NodePtr<T>>,
14 head: Option<NodePtr<T>>,
15 tail: Option<NodePtr<T>>,
16 // Reverse singly linked list of free nodes
17 free_ptrs: Seq<NodePtr<T>>,
18 free_tail: Option<NodePtr<T>>,
19 // Reverse singly linked list of backing pages
20 page_ptrs: Seq<PageNodePtr>,
21 page_tail: Option<PageNodePtr>,
22 }
23
24 spec fn well_formed<T>(list: &LinkedList<T>) -> bool {
25 // ...
26 && forall |i: nat| 0 <= i < list.ptrs.len() ==>
27 list.perms.domain().contains(list.ptrs[i].page_pptr())
28 }
29
30 fn push_back<T>(list: &mut LinkedList<T>, v: T)
31 requires
32 well_formed(old(list)),
33 old(list).free_ptrs.len() > 0,
34 ensures
35 well_formed(list),
36 list.free_ptrs.len() == old(list).free_ptrs.len() - 1,
37 list.ptrs.len() == old(list).ptrs.len() + 1,
38 v == list.perms[list.ptrs.last().page_pptr()]
39 .value_at(list.ptrs.last().index()).contents
40 {
41 let ptr: NodePtr<T> = list.free_tail.unwrap();
42 let perm: &PagePerm<T> = list.perms[ptr.page_pptr()];
43 let node: &Node<T> = ptr.borrow(perm);
44 // Update free ptrs linked list and model sequence
45 list.free_tail = node.prev;
46 list.free_ptrs = list.free_ptrs.take(list.free_ptrs.len() - 1);
47 // Update contents of this ptr
48 ptr.put(perm, Node { contents: v, prev: list.tail, next: None });
49 // Update ptrs linked list and model sequence
50 if list.tail.is_none() {
51 list.head = Some(ptr);
52 }
53 list.tail = Some(ptr);
54 list.ptrs = list.ptrs.push(ptr);
55 }

Listing 1. Partial implementation of a resizable linked list.

linked list of free nodes (line 18) (representing the capac-
ity of the linked list), and a reverse singly linked list of
memory pages that provide memory for the individual el-
ements of the list (lines 20-21). Each sublist is further mod-
elled through the ghost Seq type: as an abstract sequence of
raw pointers which mirror the order of the list elements.
This allows us to model the linked list as a simple sequence
of values, hiding the inner complexity of the linked list from
any other data structures that need to reason about it.
As we will discuss in Section 4, the linked list leverages

linear ghost types [?] and the PageArena abstraction to reason
about raw pointers in a way which is safe and memory ef-
ficient. Because we model permissions as linear objects, we
can only read from a given raw pointer if we hold an im-
mitable reference to the corresponding permission (line 43),
and we can only write to it if we hold a mutable reference to
the corresponding permission (line 48). As such all accesses
of the raw pointer are checked by the borrow checker and
proven to be safe.

3

send(ep, va) recv(ep, va)

Thread
Control
Block

List of T1's
endpoints

List of receivers

Endpoint

Thread
Control
Block

List of T2's
endpoints

Page
Unused virtual
address

Atmosphere
microkernel

T1
T2

Figure 1. Architecture of Atmosphere. Thread 𝑇1 invokes the
send() system call to pass a page to 𝑇2 which is already waiting
on the endpoint inside the microkernel.

3 Architecture
Atmosphere is a full-featured microkernel conceptually sim-
ilar to the line of classical L4 microkernels before the in-
troduction of a capability interface in seL4 [?]. Similar to
other microkernels, Atmosphere pushes most kernel func-
tionality to user-space, e.g., device drivers, network stack,
file systems, etc. The microkernel supports a minimal set of
mechanisms to implement address spaces, memorymanage-
ment, interrupt dispatch, inter-process communication, and
threads of execution that together with address spaces im-
plement an abstraction of a process. Each process has a page
table and a collection of schedulable threads. Atmosphere al-
lows threads to control layout of their virtual address space
through a collection of system calls that support mapping
and unmapping of pages as well as receiving pages from
other threads via communication endpoints. Atmosphere is
a multiprocessor system, but to simplify verification we rely
on a big-lock synchronization, i.e., all interrupts and system
calls execute in the microkernel under one global lock and
with further interrupts disabled.

Atmosphere implements a verified page allocator and de-
velops a novel scheme that allows allocation of fine-grained
objects somewhat similar to Slab in Linux, which allows
the kernel to implement dynamic data structures like linked
lists.
Atmosphere allows processes to communicate via end-

points. A sender thread can pass scalar data, references to
memory pages, and references to other endpoints. A re-
ceiver thread must be waiting on the endpoint for the mes-
sage transfer to happen. If no receivers are waiting, the
sender gets enqueued on the endpoint until the first receiver
arrives. The endpoint supports the queue of senders and re-
ceivers.
The endpoints work as capabilites that allow connections

between processes (processes can exchange endpoints and
then establish regions of shared memory). Shared memory

regions provide support for efficient communication [? ? ?].
Endpoints also provide notification mechanism that allows
us to avoid polling on shared memory, i.e., a thread can wait
on an endpoint for notification from other threads.
System call interface Atmosphere provides support for
creating new processes and threads, allocating andmapping
pages of memory, creating and exchanging communication
endpoints. The microkernel however does not support load-
ing of new processes and instead delegates it to a user-space
protocol. Specifically, the parent process is allowed to share
an endpoint with the child (by passing it as an argument
to the system call that creates a new process). The kernel
creates a minimal address space for the child with a simple
statically-linked trampoline code – same for all new pro-
cesses in the system. The boot code uses the endpoint to
communicate with the rest of the system that allows it to
load the linker and the process binary from the file sys-
tem. Control over the process boot protocol allows us to
implement traditional fork and exec primitives. To imple-
ment fork, the child process communicates with the parent
to first map its address space and then copy it. Similarly the
parent allows the child to inherit its file descriptors in the
file system.
Device drivers and interrupts Atmosphere implements
all device drivers as user-space processes. The microkernel
allows a user thread to register for an interrupt by trying to
receive a message from an interrupt endpoint. A low-level
interrupt handler unblocks all threads waiting on a specific
interrupt. A trusted boot loader creates the first process that
has access to all PCIe regions and can share them with de-
vice driver processes.

4 Verification
Specifications Atmosphere captures high-level behavior
of the system as a collection of high-level specifications
for the microkernel interface. This is similar to previous ap-
proaches [? ?]. For example, the specification of a system
call that creates a new thread reflects that a new thread is
added to the list of threads of the same process and can ac-
cess the same address space. We then prove that the imple-
mentation of each system call is a refinement of its high-
level specification. That is, when a microkernel call is ex-
ecuted, its effect to the whole system is equivalent to the
change in a high-level specification.
Internally, we structure specifications as the ones that de-

fine well-formedness of the kernel state, i.e., all data struc-
tures and resources managed by the kernel are well-formed,
and the ones that capture functional behavior, i.e., updates
to the system’s state. For example, a well-formed pool of
physical pages is such that for each physical page it is ei-
ther mapped by one or more alive processes or stored in the
free pool. The kernel is structurally well-formed at all times
if and only if it maintains kernel structural integrity at boot
time and after each function call.

4

1 pub fn pop_scheduled_thread(&mut self)
2 -> (thread_ptr: ThreadPtr)
3 requires
4 old(self).wf_scheduler(),
5 ensures
6 self.threads[thread_ptr].state == running,
7 self.scheduler ==
8 old(self).scheduler.subrange(1, old(self).scheduler.len()),
9 self.wf_scheduler(),

Listing 2. Functional correctness specification

We capture functional behavior of the system using
Floyd-Hoare logic: as a collection of pre and post conditions
on its state. For example, Listing 2 illustrates a simplified
specification for the scheduler function, pop_scheduled_thread(),
that picks the next thread to run. The requires clause con-
tains preconditions that must hold before the invocation of
the function (in this case the scheduler must be in a well-
formed state). The postconditions in ensures clause describe
how the state of the system will change after the invoca-
tion. Specifically, pop_scheduled_thread() contains three post-
conditions, in which the first two define the functional cor-
rectness of pop_scheduled_thread() as: (1) The state of the sched-
uler after the invocation will be the same as equivalent to its
previous state with its oldest thread popped (FIFO schedul-
ing). (2) The popped thread is correctly marked as running.
(3) Scheduler remains well-formed in the new state.

We execute Atmosphere under a big lock with interrupts
disabled to sidestep complexity of reasoning about concur-
rency (previous work argues that big-lock insignificantly af-
fects performance of a microkernel system [?]). This allows
us to model each kernel invocation as an atomic transaction
on the kernel state. Atmosphere ensures kernel structural
integrity and functional correctness before and after each
system call (and each interrupt transition). Each kernel in-
vocation transitions the kernel from one well-formed state
to another and adheres to the high-level specification which
captures the effect of the system call.
Overall, this allows us to proof high-level properties of

the kernel. For example, we define and prove Atmosphere
kernel memory correctness specifications as: (1) The kernel
memory pages and user-mapped pages are disjoint. (2) The
kernel components do not overlap. (3)Thewhole system has
no memory leaks.

Raw pointers andmemorymanagement The true power
of Verus comes from its support for reasoning about raw
pointers and objects allocated on the heap via a combination
of permissioned pointers, i.e., PPtr<T>, and a linear ghost per-
mission type PointsTo<T> [?]. Specifically, to read from a raw
pointer one requires an immutable reference to the permis-
sion corresponding to that pointer (writing requires a mu-
table reference to the permission). Hence, accesses to raw
pointers follow the normal ownership model in Rust. This
proves that accesses are safe, linearized, and that pointer
provenance is upheld.

However, Verus makes a critical simplifying design
choice – it trusts the memory allocator to create objects
behind permissioned pointers – something we would like
to avoid. While it’s possible to verify the allocator, the er-
gonomics of the proof relies on the abstraction of permis-
sion pointers resulting in the chicken-and-egg problem.
In order to leverage the abstraction of linear permissioned

pointers, we introduce several mechanisms that support rea-
soning about raw pointers but without requiring trust in
the memory allocator. First, we develop a simple verified
memory allocator that can allocate memory in the units of
pages, (i.e., 4096 bytes in our system). The allocator tracks
page state with a static array and hence does not depend
on permission pointers. We then change Verus to allow con-
struction of only one permission pointer type – a pointer to
an untyped page of bytes, PPtr<[u8; 4096]>, which can only be
created from a page of memory obtained from the allocator.
In other words, instead of trusting a generic allocator, we
first allocate a page from a simple page allocator and then
retype it into a permission pointer to that page. Finally, to
support allocation of smaller objects, we develop an abstrac-
tion of an arena that allows us to split a page into a collection
of smaller objects.
Therefore, to allocate an object of type T (the object must

be smaller than a page), we allocate a ghost data structure,
PageArena, which splits a 4 KiB page into an array of values.
A PageArena is created from an untyped page (PPtr<[u8; 4096]>)
and its corresponding permission. Once created, fat point-
ers to typed elements (PageElementPtr<T>) can then be derived
from the arena. In order to access an element, both the fat
pointer and the underlying ghost arena (immutable borrow
for reads, mutable borrow for writes) are required. Access
to typed elements is thus linearized in a manner similar to
permissioned pointers in Verus.
Since a ghost PageArena instance represents the permission

to access all elements in the page, deallocation is made pos-
sible by converting the ghost arena back to an untyped page
permission (PointsTo<[u8; 4096]>). Without the ghost arena, all
previously-allocated elements become permanently inacces-
sible and the page can thus be reused. This is in contrast
to splitting an untyped page into individual permissions,
where deallocation of a page would require tracking all per-
missions to typed values in the page.
For each PageArena<T, MT>, we further provide a way to in-

clude optional metadata (MT) for each page. This metadata is
included after the typed elements and can be used to link
multiple page arenas together to construct resizeable con-
tainers like linked lists.
To bootstrap the verified memory allocator, we extend

Verus to support the creation of PPtr<[u8; 4096]>s from phys-
ical pages passed by the boot manager. We enforce type
safety with a transparent wrapper type, BootPage, that follows
Rust’s new type idiom [?] and acts as a token that represents
a unique physical page. The wrapper has a single, private

5

1 fn grow<T>(list: &mut LinkedList<T>, page: PagePPtr, perm: PagePerm<T>)
2 requires
3 well_formed(old(list)),
4 page.id() == perm.page_base(),
5 ensures
6 well_formed(list),
7 list.free_ptrs.len() == old(list).free_ptrs.len()
8 + PagePerm::<T>::capacity(),
9 list.page_ptrs.len() == old(list).page_ptrs.len() + 1,
10 {
11 let offset = list.free_ptrs.len();
12 // Generate pointers for each element in the page,
13 // and add them to the free pointers list
14 let mut idx: usize = 0;
15 // Inductively show all new free pointers are valid and unique
16 while idx < PagePerm::<T>::capacity();
17 invariant
18 idx <= PagePerm::<T>::capacity(),
19 list.free_ptrs.len() == offset + idx,
20 forall |k: nat| 0 <= k < idx ==>
21 (list.free_ptrs[offset + k].page_ptr() == page &&
22 list.free_ptrs[offset + k].index() == k),
23 // ...
24 {
25 // Extend the free pointers list and model sequence
26 let ptr = NodePtr::<T>::new(page, idx);
27 ptr.put(perm, Node {
28 contents: undefined(), prev: list.free_tail, next: None
29 });
30 list.free_tail = Some(ptr);
31 list.free_ptrs = list.free_ptrs.push(ptr);
32 idx += 1;
33 }
34 // Using the metadata type, store and extend the list
35 // of pages owned by this data structure
36 let page_node = PageNodePtr::new(page);
37 page_node.put(perm, PageNode { prev: list.page_tail });
38 list.page_tail = Some(page_node);
39 list.page_ptrs = list.page_ptrs.push(page_node);
40 // Take ownership of the page permission
41 list.perms.insert(page, perm);
42 }

Listing 3. Example use of PageArena for growing the linked list.

field that contains the physical address of the page. Since
thewrapper type does not have a public constructormethod,
the Rust type system guarantees that there is no way to con-
struct it in safe Rust. The #[repr(transparent)] attribute further
provides ABI stability by ensuring that the wrapper has the
same data layout as the enclosed raw pointer, so the BootPage

tokens may be handed off by the boot manager to the micro-
kernel.
Dynamic data structures A combination of page arenas
and the ability to store metadata for each page allows us
to construct complex dynamic data structures such as page
backed linked lists (Listing 1). Crucially, using the PageArena

abstraction, we can grow the linked list using our verified
page allocator in awaywhich ismemory efficient (as it gives
us the ability to allocate many smaller objects from each
pages). In the grow() function (Listing 3) we take a single page,
split it into a large number of pointers to smaller node ob-
jects and append these pointers to the free list (lines 16-33).
In doing so we grow the capacity of the linked list. We also
use the metadata object to store a list of pages owned by the
linked list (lines 36-39), which is used for deallocation.
Field-level mutation At the moment, Verus does not sup-
port returning mutable references from functions and sup-
port for mutable references in function arguments is lim-
ited to special cases. To allow mutation of the value, per-
missioned pointers in Verus expose setters. This comes with

the downside of not being able to modify specific fields of
a data structure without copying the entire structure – an
overhead prohibitive for a microkernel.
To support efficient field-level mutation, we implement a

procedural macro that generates getters and setters for each
field in a data structure, as well as the corresponding trusted
specifications that update the abstract state. The generic na-
ture of the procedural macro facilitates the auditing of gen-
erated specifications for all structures it’s applied to.
In the future, it’s expected that Verus will add support

for returningmutable references by adopting prophecy vari-
ables [?].
Page memory allocator Atmosphere implements page
memory allocator with two data structures: 1) a fixed size
array that tracks the state of every page, and 2) a fixed size
queue that implements a single-linked list of free pages. A
trusted boot manager enumerates all available memory in
the system and creates the initial list for the page alloca-
tor. We use the page allocator to allocate coarse-grained
data structures like threads, processes, endpoint, pages for
the page table, and to allocate page arenas for dynamically
growing linked lists. A page in Atmosphere is in one of the
three states: free, allocated to use inside the kernel, i.e., pro-
vide memory for one of the kernel data structures, or mapped

by user processes as part of the process address space. A
mapped page contains a reference counter that tracks the
number of times the page is mapped (we allow pages to be
mapped multiple times inside the process and share pages
across processes).
Paging Atmosphere contains a verified subsystem to sup-
port four-level paging. For simplification, we model an ad-
dress space as a tree where each present entry in a paging
structure points to a paging structure in the next level, or a
4 KiB data page. We ensure that it is impossible for an en-
try to point to a paging structure of the wrong level or is
not well-formed. Furthermore, it should not be possible to
interpret a data page as a paging structure or vice versa.
To achieve these goals, Atmosphere implements paging

using strongly-typed tables for each level of the paging
structure, with linearity enforced using permissioned point-
ers. Each paging structure is modeled as a generic data struc-
ture PagingLevel<E, T> containing 4096 entries (E) with each
present entry pointing at a target (T). The allowed types of
E and T are constrained by bounds on traits which provide
common methods that indicate entry presence as well as
perform lookup and mutation. For each present entry, the
paging structures also contain ghost state to keep track of
the permission corresponding to the target.
Translation lookaside buffer (TLB) Atmosphere uses
tagged TLB to implement specifications and verification
of the code responsible for flushing the TLB in a multi-
processor system. CPU running in tagged TLB mode uses
the first 12 bits of the cr3 as a process context identifier

6

(PCID) to identify different address spaces and completely
ignores the cr3 address bits (lower bits) while performing a
TLB lookup. We specify the expected behavior of the virtual
to physical memory translation mechanism as a map con-
taining correspondence between the virtual and physical ad-
dresses for each PCID. For each CPU’s TLB, we model it as a
similar map between the virtual and physical addresses for
each PCID.
Interrupts and context switch Unlike a typical kernel, At-
mosphere does not save execution state of the thread on a
kernel stack during the context switch. Instead, all kernel
functions (interrupt handlers and system calls) run to com-
pletion and if the context switch is required a small trusted
helper saves the user-state of the thread (i.e., it’s trap frame)
in the thread data structure. In Atmosphere, each CPU has
one kernel stack for all threads (note, each CPU maintains
another stack for processing non-maskable inter-processor
interrupts that we use for TLB invalidation). This design
choice allows us to simplify the proof.When the kernel func-
tion returns, the kernel is in a well-formed state, and the
kernel stack pointer is restored to the original position.

5 Implementation
Build environment TheAtmosphere microkernel consists
of both verified and non-verified components built using a
trusted compilation environment, e.g., Atmosphere relies on
a trusted boot manager to initialize the system. Compilation
of the microkernel is done in two passes. The build system
first invokes the Verus toolchain on the verified components.
Then a regular Rust toolchain is used to compile the entire
kernel with ghost code erased.We use the same Rust version
that the Verus toolchain is based on to minimize potential
differences in code generated by the two toolchains.
Stack size analysis Verus cannot guarantee the absence
of stack overflows since it does not model the hardware and
relies on Rust to correctly abstract details of the machine ex-
ecuting the code. To ensure that micorkernel has sufficient
stack space, we statically compute the maximum stack size
that may be used by the microkernel on all possible execu-
tion paths. During compilation, Rust summarizes the stack
sizes of individual functions. We rely on the LLVM bitcode
and extract the call graph of themicrokernel using an LLVM
IR pass. Based on the call graph, we attempt to derive the up-
per bounds of stack usage for all entry points (e.g., the main
function, system calls, and interrupt handlers). The binary
is rejected if the upper bound cannot be found, which can
occur in the presence of cycles in the call graph. The boot
loader then allocates sufficiently big microkernel stacks on
each CPU.

6 Evaluation
We carry development of Atmosphere on one of the Cloud-
Lab [?] c220g5 servers which are configured with two Intel
Xeon Silver 4114 10-core CPUs running at 2.20 GHz, 192 GB

Name Language Spec Lang. Proof-to-Code Ratio
seL4 C+Asm Isabelle/HOL 20:1 [?]

CertiKOS C+Asm Coq 14.9:1 [?]
SeKVM C+Asm Coq 6.9:1 [?]
Ironclad Dafny Dafny 4.8:1 [?]
NrOS Rust Verus (Rust eDSL) 10:1 [?]

Atmosphere Rust Verus (Rust eDSL) 7.5:1

Figure 2. Proof effort for existing verification projects.

RAM.Those machines run 64-bit Ubuntu 20.04 Linux with a
5.4.0 kernel. Verus takes approximately 20 seconds to reason
about verified parts of the kernel. Individual functions take
4 seconds at most when the runtime checks are turned on
(this is inline with recent work [?]). With runtime checks
turned off, Verus takes roughly 30 minutes to finish the
proof and spends upto 850 seconds at most on a function.
Therefore, we believe that there is room for improvement
both the Verus verification toolchain and in how we struc-
ture our proofs.
Atmosphere has a proof-to-code ratio of 7.5:1 which is a

significant improvement compared to the existing formally
verified microkernels SeL4 [?] and CertiKOS [?], which
have proof-to-code ratio of 19:1 and 20:1, respectively (Fig-
ure 2).

7 Conclusions
Our early experience with Atmosphere demonstrates that
a combination of a linear type system, a practical language
designed for development of low-level systems, and an au-
tomated reasoning tool, Verus, takes a huge step towards
enabling low-burden verification of kernel code. While we
had to be conscious of the internal organization of the sys-
tem to make sure that verification is possible, in most cases
Verus provides a way to move forward without significant
limitations on the kernel code and with an excellent degree
of proof automation.

Acknowledgments
We would like to thank KISV’23 reviewers for various in-
sights helping us to improve this work. This research is sup-
ported in part by the National Science Foundation under
Grant Numbers 2313411, 1837127 and 2341138, and Ama-
zon.

References

7

	Abstract
	1 Introduction
	2 Background
	3 Architecture
	4 Verification
	5 Implementation
	6 Evaluation
	7 Conclusions
	Acknowledgments
	References

